Partial Least Squares regression

GPTKB entity

Statements (47)
Predicate Object
gptkbp:instanceOf statistical analysis
gptkbp:advantage interpretation of components can be difficult
reduces dimensionality
works with highly collinear data
gptkbp:alsoKnownAs gptkb:PLS_regression
gptkbp:appliesTo gptkb:chemometrics
social sciences
bioinformatics
econometrics
gptkbp:category supervised learning
gptkbp:developedBy gptkb:Herman_Wold
gptkbp:extendsTo least squares regression
gptkbp:handles multicollinearity
https://www.w3.org/2000/01/rdf-schema#label Partial Least Squares regression
gptkbp:implementedIn gptkb:Python
gptkb:SAS
gptkb:MATLAB
R
gptkbp:input predictor variables
response variables
gptkbp:introducedIn 1960s
gptkbp:output latent variables
regression coefficients
gptkbp:relatedTo gptkb:principal_component_regression
gptkb:factor_analysis
linear regression
ridge regression
multivariate statistics
canonical correlation analysis
partial least squares path modeling
gptkbp:requires centering of data
scaling of data
gptkbp:supportsAlgorithm linear modeling
gptkbp:usedFor gptkb:machine_learning
statistical analysis
predictive modeling
genomics data analysis
dimension reduction
multivariate calibration
spectroscopy data analysis
quantitative structure-activity relationship modeling
gptkbp:variant NIPALS algorithm
PLS1
PLS2
SIMPLS algorithm
gptkbp:bfsParent gptkb:PLS_regression
gptkbp:bfsLayer 8