PLS path modeling

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf statistical analysis
gptkbp:advantage suitable for exploratory research
robust to multicollinearity
gptkbp:alsoKnownAs gptkb:Partial_Least_Squares_Path_Modeling
gptkbp:contrastsWith covariance-based SEM
gptkbp:developedBy gptkb:Herman_Wold
gptkbp:estimatedCost R-squared values
effect sizes
latent variable scores
outer loadings
outer weights
path coefficients
predictive relevance (Q-squared)
gptkbp:handles small sample sizes
formative and reflective measurement models
non-normal data
https://www.w3.org/2000/01/rdf-schema#label PLS path modeling
gptkbp:introducedIn 1970s
gptkbp:limitation less suitable for theory testing
no global goodness-of-fit index
gptkbp:output average variance extracted (AVE)
composite reliability
discriminant validity
indicator reliability
latent variable correlations
model fit indices
path diagram
statistical significance of paths
gptkbp:relatedTo gptkb:principal_component_analysis
statistical analysis
path analysis
covariance-based SEM
gptkbp:requires measurement model specification
structural model specification
gptkbp:software gptkb:ADANCO
gptkb:PLS-Graph
gptkb:SmartPLS
gptkb:WarpPLS
R package plspm
gptkbp:usedFor analyzing complex relationships between observed and latent variables
gptkbp:usedIn social sciences
marketing research
management research
information systems research
structural equation modeling
gptkbp:uses bootstrapping for significance testing
resampling techniques
gptkbp:bfsParent gptkb:Partial_Least_Squares_(statistical_method)
gptkbp:bfsLayer 7