Open AI Gym's Atari collection
GPTKB entity
Statements (52)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:video_game
|
gptkbp:allows |
customizable environments
|
gptkbp:based_on |
Atari 2600 console
|
gptkbp:contains |
over 100 games
|
gptkbp:developed_by |
gptkb:Open_AI
|
gptkbp:enables |
benchmarking AI algorithms
|
gptkbp:features |
game graphics
|
https://www.w3.org/2000/01/rdf-schema#label |
Open AI Gym's Atari collection
|
gptkbp:includes |
Atari 2600 games
|
gptkbp:is_accessible_by |
gptkb:API
|
gptkbp:is_available_for |
commercial use
research purposes personal projects |
gptkbp:is_available_on |
gptkb:archive
|
gptkbp:is_compatible_with |
gptkb:Graphics_Processing_Unit
gptkb:Py_Torch |
gptkbp:is_documented_in |
Open AI documentation
|
gptkbp:is_integrated_with |
gptkb:Stable_Baselines
gptkb:Open_AI_Baselines |
gptkbp:is_part_of |
gptkb:stadium
simulation environments reinforcement learning benchmarks AI training pipelines |
gptkbp:is_popular_in |
machine learning community
|
gptkbp:is_promoted_by |
gptkb:Open_AI_blog
research papers workshops conferences |
gptkbp:is_supported_by |
tutorials
community contributions online forums |
gptkbp:is_tested_for |
A3 C algorithm
DDPG algorithm DQN algorithm PPO algorithm SAC algorithm |
gptkbp:is_used_for |
actor-critic methods
deep reinforcement learning policy gradient methods value-based methods training AI agents |
gptkbp:is_used_in |
gptkb:Research_Institute
educational purposes competitions |
gptkbp:provides |
reinforcement learning environments
|
gptkbp:provides_access_to |
game scores
|
gptkbp:requires |
Open AI Gym library
|
gptkbp:supports |
gptkb:language
multi-agent environments |
gptkbp:updates |
new games
|
gptkbp:bfsParent |
gptkb:Lunar_Lander-v2
|
gptkbp:bfsLayer |
4
|