gptkbp:instanceOf
|
gptkb:software
|
gptkbp:canBe
|
gptkb:Pandas
gptkb:Dask
gptkb:Jupyter_Notebook
gptkb:SciPy
|
gptkbp:category
|
gptkb:software
Scientific computing
High-performance computing
|
gptkbp:citation
|
gptkb:Lam,_S._K.,_Pitrou,_A.,_&_Seibert,_S._(2015)._Numba:_A_LLVM-based_Python_JIT_compiler._Proceedings_of_the_Second_Workshop_on_the_LLVM_Compiler_Infrastructure_in_HPC.
|
gptkbp:compilesTo
|
gptkb:LLVM
|
gptkbp:developer
|
gptkb:Anaconda,_Inc.
|
gptkbp:feature
|
multithreading support
support for Linux
support for Windows
support for macOS
@cuda.jit decorator
@guvectorize decorator
@jit decorator
@njit decorator
@vectorize decorator
automatic type inference
nopython mode
parallel mode
support for GPU acceleration
support for Python 3
support for ufuncs
|
https://www.w3.org/2000/01/rdf-schema#label
|
Numba
|
gptkbp:latestReleaseVersion
|
0.59.1
|
gptkbp:license
|
gptkb:BSD_license
|
gptkbp:programmingLanguage
|
gptkb:Python
|
gptkbp:purpose
|
Just-in-time compilation
Accelerate numerical Python functions
|
gptkbp:releaseDate
|
2012
|
gptkbp:repository
|
https://github.com/numba/numba
|
gptkbp:supports
|
gptkb:CUDA
gptkb:NumPy
parallel computing
Python functions
|
gptkbp:uses
|
gptkb:LLVM
|
gptkbp:website
|
https://numba.pydata.org/
|
gptkbp:writtenBy
|
gptkb:Python
gptkb:C++
C
|
gptkbp:bfsParent
|
gptkb:scipy_ecosystem
gptkb:Anaconda
|
gptkbp:bfsLayer
|
6
|