Non-negative Matrix Factorization

GPTKB entity

Statements (48)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
gptkbp:abbreviation gptkb:NMF
gptkbp:application bioinformatics
image processing
recommender systems
text mining
gptkbp:category unsupervised learning
matrix decomposition
gptkbp:field gptkb:machine_learning
linear algebra
data mining
https://www.w3.org/2000/01/rdf-schema#label Non-negative Matrix Factorization
gptkbp:input_constraint input matrix must have non-negative elements
gptkbp:introduced 1999
Daniel D. Lee
H. Sebastian Seung
gptkbp:limitation local minima
scalability for large datasets
sensitivity to initialization
gptkbp:objective_function minimize Frobenius norm
minimize Kullback-Leibler divergence
minimize reconstruction error
gptkbp:optimizedFor alternating least squares
multiplicative update rules
gptkbp:output approximate factorization
two non-negative matrices
gptkbp:prohibits non-negativity
gptkbp:property interpretable factors
non-uniqueness of solution
parts-based representation
gptkbp:relatedConcept gptkb:Independent_Component_Analysis
gptkb:Factor_Analysis
Convex NMF
Dictionary Learning
Non-negative Tensor Factorization
Sparse NMF
gptkbp:relatedTo gptkb:Singular_Value_Decomposition
gptkb:Latent_Semantic_Analysis
Principal Component Analysis
gptkbp:software gptkb:TensorFlow
gptkb:MATLAB
gptkb:scikit-learn
R
gptkbp:usedFor dimensionality reduction
feature extraction
topic modeling
gptkbp:bfsParent gptkb:NMF
gptkbp:bfsLayer 8