Non-negative Matrix Factorization
GPTKB entity
Statements (48)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:algorithm
|
gptkbp:abbreviation |
gptkb:NMF
|
gptkbp:application |
bioinformatics
image processing recommender systems text mining |
gptkbp:category |
unsupervised learning
matrix decomposition |
gptkbp:field |
gptkb:machine_learning
linear algebra data mining |
https://www.w3.org/2000/01/rdf-schema#label |
Non-negative Matrix Factorization
|
gptkbp:input_constraint |
input matrix must have non-negative elements
|
gptkbp:introduced |
1999
Daniel D. Lee H. Sebastian Seung |
gptkbp:limitation |
local minima
scalability for large datasets sensitivity to initialization |
gptkbp:objective_function |
minimize Frobenius norm
minimize Kullback-Leibler divergence minimize reconstruction error |
gptkbp:optimizedFor |
alternating least squares
multiplicative update rules |
gptkbp:output |
approximate factorization
two non-negative matrices |
gptkbp:prohibits |
non-negativity
|
gptkbp:property |
interpretable factors
non-uniqueness of solution parts-based representation |
gptkbp:relatedConcept |
gptkb:Independent_Component_Analysis
gptkb:Factor_Analysis Convex NMF Dictionary Learning Non-negative Tensor Factorization Sparse NMF |
gptkbp:relatedTo |
gptkb:Singular_Value_Decomposition
gptkb:Latent_Semantic_Analysis Principal Component Analysis |
gptkbp:software |
gptkb:TensorFlow
gptkb:MATLAB gptkb:scikit-learn R |
gptkbp:usedFor |
dimensionality reduction
feature extraction topic modeling |
gptkbp:bfsParent |
gptkb:NMF
|
gptkbp:bfsLayer |
8
|