Statements (49)
Predicate | Object |
---|---|
gptkbp:instanceOf |
Computational Intelligence System
|
gptkbp:advantage |
Adaptability
Interpretability Generalization Ability Robustness to Noise |
gptkbp:appliesTo |
Learning Algorithms
Fuzzy Rules |
gptkbp:canBe |
Unsupervised
Supervised |
gptkbp:combines |
gptkb:Fuzzy_Logic
gptkb:Artificial_Neural_Networks |
gptkbp:developedBy |
1990s
|
gptkbp:enables |
gptkb:Learning_from_Data
Approximate Reasoning Handling Uncertainty |
gptkbp:hasApplication |
gptkb:robot
gptkb:Speech_Recognition gptkb:Intelligent_Transportation_Systems Image Processing Industrial Automation Medical Diagnosis Fault Detection Process Control Financial Forecasting |
gptkbp:hasComponent |
gptkb:Inference_Engine
Defuzzification Module Fuzzification Module Rule Base Neural Network Module |
https://www.w3.org/2000/01/rdf-schema#label |
Neuro-Fuzzy Systems
|
gptkbp:implementedIn |
gptkb:Python
gptkb:C++ gptkb:MATLAB |
gptkbp:learnsFrom |
Training Data
|
gptkbp:optimizedFor |
Membership Functions
Rule Parameters |
gptkbp:relatedTo |
gptkb:Adaptive_Neuro-Fuzzy_Inference_System
Hybrid Intelligent System |
gptkbp:supports |
Regression
Time Series Prediction Classification Function Approximation Nonlinear System Modeling |
gptkbp:usedIn |
gptkb:Pattern_Recognition
Data Mining Control Systems Decision Making |
gptkbp:bfsParent |
gptkb:Fuzzy_Neural_Networks
|
gptkbp:bfsLayer |
6
|