Statements (33)
Predicate | Object |
---|---|
gptkbp:instanceOf |
gptkb:mathematical_concept
learning theory |
gptkbp:abbreviation |
gptkb:NTK
|
gptkbp:appliesTo |
convolutional neural networks
recurrent neural networks fully connected neural networks |
gptkbp:arXivID |
1806.07572
|
gptkbp:basisFor |
NTK regression
NTK-based generalization bounds NTK-based optimization analysis |
gptkbp:describes |
infinite-width neural networks
|
gptkbp:enables |
closed-form solutions for training dynamics
linearization of neural network training |
gptkbp:field |
gptkb:machine_learning
gptkb:mathematics deep learning |
https://www.w3.org/2000/01/rdf-schema#label |
Neural Tangent Kernel
|
gptkbp:influenced |
theoretical deep learning research
|
gptkbp:introduced |
Arthur Jacot
Clément Hongler Franck Gabriel |
gptkbp:introducedIn |
2018
|
gptkbp:limitingCaseOf |
infinite-width neural networks
|
gptkbp:publishedIn |
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
|
gptkbp:relatedTo |
gptkb:Gaussian_processes
gptkb:kernel_methods gradient descent function space view random initialization |
gptkbp:usedFor |
theoretical analysis of neural networks
analyzing training dynamics |
gptkbp:bfsParent |
gptkb:NTK
|
gptkbp:bfsLayer |
5
|