Neural Ordinary Differential Equations

GPTKB entity

Statements (32)
Predicate Object
gptkbp:instanceOf gptkb:model
gptkbp:abbreviation Neural ODEs
gptkbp:application latent variable models
continuous normalizing flows
time series modeling
gptkbp:citation over 5000 (as of 2024)
gptkbp:field gptkb:machine_learning
deep learning
partial differential equations
gptkbp:hasConcept parameterize the derivative of hidden state using a neural network
https://www.w3.org/2000/01/rdf-schema#label Neural Ordinary Differential Equations
gptkbp:impact inspired research in continuous-time deep learning
gptkbp:introduced Ricky T. Q. Chen
gptkbp:introducedIn 2018
gptkbp:mainPaperAuthors gptkb:David_Duvenaud
Jesse Bettencourt
Ricky T. Q. Chen
Yulia Rubanova
gptkbp:mainPaperTitle gptkb:Neural_Ordinary_Differential_Equations
gptkbp:mainPaperURL https://arxiv.org/abs/1806.07366
gptkbp:mainPaperYear 2018
gptkbp:openSource DiffEqFlux.jl
torchdiffeq
gptkbp:publishedIn gptkb:NeurIPS_2018
gptkbp:relatedTo ODE solvers
residual networks
continuous-depth models
gptkbp:trainer adjoint sensitivity method
gptkbp:usedIn modeling dynamical systems
physics-informed machine learning
gptkbp:bfsParent gptkb:Google_Brain_(former)
gptkbp:bfsLayer 7