Netflix recommendation engine

GPTKB entity

Statements (49)
Predicate Object
gptkbp:instanceOf Recommendation
gptkbp:developedBy gptkb:Netflix
https://www.w3.org/2000/01/rdf-schema#label Netflix recommendation engine
gptkbp:impact increased user engagement
increased watch time
reduced churn
gptkbp:improves Netflix Prize competition
gptkbp:input time of day
device type
user ratings
search queries
user viewing history
gptkbp:launched 2006
gptkbp:output genre suggestions
personalized home page
row ordering
thumbnail selection
title ranking
gptkbp:relatedTo gptkb:Netflix_Prize
A/B testing
Reinforcement learning
Content discovery
Scalability
Personalized ranking
Bandit algorithms
Cold start problem
Diversity in recommendations
Explicit feedback
Exploration-exploitation tradeoff
Implicit feedback
Matrix factorization
Personalization algorithms
Serendipity in recommendations
User interface personalization
User retention
gptkbp:technology gptkb:Java
gptkb:Python
gptkb:AWS
gptkb:TensorFlow
gptkb:Apache_Spark
Metaflow
gptkbp:updated continuously
gptkbp:usedFor personalized content recommendations
gptkbp:uses gptkb:machine_learning
deep learning
collaborative filtering
content-based filtering
gptkbp:bfsParent gptkb:Amazon_recommendation_engine
gptkbp:bfsLayer 7