NVIDIA's Volta architecture
GPTKB entity
Statements (84)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:architecture
|
gptkbp:assets |
cloud service providers
|
gptkbp:competes_with |
gptkb:AMD_Vega_architecture
|
gptkbp:designed_for |
high-performance computing
|
gptkbp:developed_by |
gptkb:NVIDIA
|
gptkbp:enables |
real-time ray tracing
|
gptkbp:features |
gptkb:Tensor_Cores
|
https://www.w3.org/2000/01/rdf-schema#label |
NVIDIA's Volta architecture
|
gptkbp:improves |
deep learning performance
|
gptkbp:includes |
gptkb:NVLink
|
gptkbp:is_a |
gptkb:NVIDIA
|
gptkbp:is_acclaimed_for |
its reliability
its scalability its innovative design performance in simulations |
gptkbp:is_associated_with |
gptkb:NVIDIA_Deep_Learning_SDK
|
gptkbp:is_based_on |
gptkb:GP100_GPU
|
gptkbp:is_compatible_with |
gptkb:NVIDIA_CUDA_Toolkit
various operating systems |
gptkbp:is_designed_to |
handle large datasets
accelerate scientific research accelerate AI training support AI inference |
gptkbp:is_featured_in |
industry publications
supercomputers AI research papers technology conferences |
gptkbp:is_integrated_with |
gptkb:NVIDIA_RTX_series
cloud computing environments AI development tools AI training platforms |
gptkbp:is_known_for |
high throughput
its versatility high memory capacity high compute performance its high performance per watt |
gptkbp:is_known_to |
improve model accuracy
reduce training time enhance computational efficiency |
gptkbp:is_optimized_for |
gptkb:machine_learning
|
gptkbp:is_part_of |
gptkb:NVIDIA_GPU_family
NVIDIA's data center solutions NVIDIA's AI ecosystem NVIDIA's AI research initiatives NVIDIA's hardware lineup |
gptkbp:is_recognized_as |
a breakthrough in GPU technology
a game changer in AI technology a leader in GPU performance |
gptkbp:is_recognized_for |
its architectural innovations
AI research advancements enhanced graphics rendering its impact on technology advancements |
gptkbp:is_supported_by |
NVIDIA drivers
|
gptkbp:is_used_for |
image processing
natural language processing scientific computing deep learning frameworks |
gptkbp:is_used_in |
gptkb:NVIDIA_DGX_systems
financial modeling virtual reality applications robotics applications |
gptkbp:is_utilized_by |
research institutions
academic researchers machine learning practitioners |
gptkbp:is_utilized_for |
data analysis
|
gptkbp:is_utilized_in |
gptkb:vehicles
big data analytics machine learning frameworks computer vision tasks |
gptkbp:manufacturer |
12 nm process
|
gptkbp:offers |
better energy efficiency
|
gptkbp:predecessor |
gptkb:NVIDIA's_Pascal_architecture
|
gptkbp:provides |
enhanced memory bandwidth
|
gptkbp:released_in |
gptkb:2017
|
gptkbp:successor |
gptkb:NVIDIA's_Turing_architecture
|
gptkbp:supports |
gptkb:CUDA
multi-GPU configurations AI workloads |
gptkbp:targets |
data centers
|
gptkbp:used_in |
gptkb:NVIDIA_Tesla_V100
gptkb:NVIDIA_Titan_V |
gptkbp:utilizes |
HBM2 memory
|
gptkbp:bfsParent |
gptkb:NVLink
|
gptkbp:bfsLayer |
5
|