NCCL

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:Library
gptkbp:developed_by gptkb:NVIDIA
gptkbp:enables data parallelism
gptkbp:features gptkb:broadcasting
asynchronous operations
error handling
load balancing
performance monitoring
asynchronous communication
peer-to-peer communication
synchronous communication
multi-threading support
reduce
dynamic topology
all-gather
collective communication algorithms
ring all-reduce
tree all-reduce
https://www.w3.org/2000/01/rdf-schema#label NCCL
gptkbp:integrates_with gptkb:CUDA
gptkbp:is_compatible_with gptkb:Tensor_Flow
gptkb:MXNet
gptkb:Py_Torch
gptkbp:is_optimized_for gptkb:NVIDIA_GPUs
gptkbp:provides high bandwidth
interoperability
low latency
performance optimization
resource management
scalability
high throughput
performance tuning tools
user-friendly API
collective operations
gptkbp:released_in gptkb:2016
gptkbp:supports gptkb:NVIDIA_RTX
gptkb:NVIDIA_DGX_systems
gptkb:NVIDIA_NVLink
gptkb:NVIDIA_A100
gptkb:NVIDIA_T4
gptkb:NVIDIA_V100
gptkb:PCIe
multi-node communication
multi-GPU communication
CUDA-aware MPI
NVIDIA GPUs in data centers
gptkbp:used_for collective communication
gptkbp:used_in gptkb:cloud_computing
gptkb:machine_learning
data analytics
high-performance computing
scientific computing
deep learning frameworks
distributed training
AI training
gptkbp:written_in gptkb:C++
gptkbp:bfsParent gptkb:Torch_Distributed
gptkbp:bfsLayer 6