McCulloch-Pitts Neuron Model
GPTKB entity
Properties (50)
Predicate | Object |
---|---|
gptkbp:instanceOf |
neural network model
|
gptkbp:basedOn |
binary threshold logic
|
gptkbp:composedOf |
weights
activation function inputs |
gptkbp:description |
a simplified representation of a neuron
|
gptkbp:developedBy |
gptkb:Warren_McCulloch
gptkb:Walter_Pitts |
gptkbp:hasCitations |
assumes binary inputs and outputs
does not model biological neurons accurately |
gptkbp:hasInfluenceOn |
modern neural networks
computational models of cognition deep learning architectures |
gptkbp:hasRelatedPatent |
control systems
signal processing data classification pattern recognition |
https://www.w3.org/2000/01/rdf-schema#label |
McCulloch-Pitts Neuron Model
|
gptkbp:influencedBy |
Boolean algebra
|
gptkbp:introduced |
1943
|
gptkbp:isAssociatedWith |
information theory
Turing machines cybernetics logic circuits |
gptkbp:isConsidered |
a foundational concept in AI
a model for understanding computation in the brain a precursor to modern neural networks |
gptkbp:isCriticizedFor |
lack of learning capability
limited representation of neural networks not accounting for synaptic dynamics oversimplification of neuron behavior |
gptkbp:isExploredIn |
academic research
philosophy of mind neuroscience literature computer science studies |
gptkbp:isFacilitatedBy |
logical functions
|
gptkbp:isPartOf |
artificial intelligence research
machine learning frameworks computational neuroscience |
gptkbp:isRelatedTo |
neural computation
perceptron artificial neurons |
gptkbp:isStudiedIn |
neural network theory
artificial intelligence ethics machine learning ethics |
gptkbp:isUsedIn |
cognitive science
theoretical neuroscience |
gptkbp:powerOutput |
binary values
|
gptkbp:usedIn |
artificial intelligence
machine learning |