Matthew's Correlation Coefficient
GPTKB entity
Statements (60)
Predicate | Object |
---|---|
gptkbp:instance_of |
gptkb:physicist
|
gptkbp:bfsLayer |
5
|
gptkbp:bfsParent |
gptkb:GLUE_Benchmark
|
gptkbp:applies_to |
confusion matrices
|
gptkbp:distance |
binary outcomes
|
gptkbp:function |
four values
|
https://www.w3.org/2000/01/rdf-schema#label |
Matthew's Correlation Coefficient
|
gptkbp:introduced |
gptkb:G._P._Matthews
|
gptkbp:is_a_tool_for |
model evaluation
|
gptkbp:is_analyzed_in |
false positives
binary outcomes false negatives true positives classification models the performance of classifiers in imbalanced datasets confusion matrix values the accuracy of predictions the performance of algorithms the performance of classifiers the reliability of predictions true negatives |
gptkbp:is_compared_to |
different models
the effectiveness of different algorithms |
gptkbp:is_essential_for |
imbalanced datasets
|
gptkbp:is_evaluated_by |
evaluating predictions
evaluating risk (TP * TN -FP * FN) / sqrt((TP + FP)(TP + FN)(TN + FP)(TN + FN)) |
gptkbp:is_influenced_by |
sample size
|
gptkbp:is_known_for |
gptkb:MCC
|
gptkbp:is_related_to |
gptkb:Cohen's_kappa
|
gptkbp:is_standardized_by |
data science
|
gptkbp:is_used_in |
gptkb:sports_team
gptkb:software_framework research studies clinical trials environmental studies financial modeling predictive analytics quality control bioinformatics data mining medical diagnostics social sciences image classification text classification |
gptkbp:key |
gptkb:Artificial_Intelligence
statistics model effectiveness |
gptkbp:measures |
machine learning research
predictive accuracy the strength of association the correlation between observed and predicted values the agreement between two raters the predictive power of a model the quality of binary classifications |
gptkbp:range |
-1 to 1
|
gptkbp:sensor |
class imbalance
|
gptkbp:suitable_for |
accuracy in some cases
|
gptkbp:type_of |
correlation coefficient
|
gptkbp:used_in |
binary classification
|