gptkbp:instanceOf
|
gptkb:research_institute
|
gptkbp:abbreviation
|
gptkb:MVL
|
gptkbp:affiliation
|
gptkb:University_of_California,_San_Diego
|
gptkbp:field
|
gptkb:artificial_intelligence
gptkb:machine_learning
materials science
computational materials science
|
gptkbp:founder
|
gptkb:Shyue_Ping_Ong
|
https://www.w3.org/2000/01/rdf-schema#label
|
Materials Virtual Lab
|
gptkbp:leader
|
gptkb:Shyue_Ping_Ong
|
gptkbp:location
|
gptkb:San_Diego,_California
|
gptkbp:notableProject
|
gptkb:pymatgen
gptkb:Materials_Project
MEGNet
Matbench
|
gptkbp:notablePublication
|
A graph-based framework for high-throughput materials screening
Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows
A universal graph deep learning interatomic potential for the periodic table
|
gptkbp:parentOrganization
|
gptkb:University_of_California,_San_Diego
|
gptkbp:researchInterest
|
catalysis
batteries
energy materials
computational methods
materials discovery
data-driven materials science
machine learning for materials
|
gptkbp:website
|
https://materialsvirtuallab.org/
|
gptkbp:bfsParent
|
gptkb:pymatgen
|
gptkbp:bfsLayer
|
8
|