Machine Learning with Differential Privacy
GPTKB entity
Statements (44)
Predicate | Object |
---|---|
gptkbp:instanceOf |
Machine Learning
Differential Privacy |
gptkbp:hasCitations |
Computational Complexity
Balancing Privacy and Utility Model_Interpretability |
gptkbp:hasFunding |
Increased Adoption
Public Awareness Improved Algorithms Regulatory Developments |
gptkbp:hasRelatedPatent |
Artificial Intelligence
Statistical Analysis Data Protection |
gptkbp:hasStaff |
Data Sharing
Regulatory Compliance Robustness Against Attacks Enhanced_User_Trust |
https://www.w3.org/2000/01/rdf-schema#label |
Machine Learning with Differential Privacy
|
gptkbp:isEvaluatedBy |
Accuracy
Scalability Privacy Loss Utility Loss |
gptkbp:isLocatedIn |
gptkb:PyTorch
TensorFlow R Scikit-learn |
gptkbp:isPromotedBy |
Academia
Governments Organizations Industry Leaders |
gptkbp:isRelatedTo |
Data Mining
Algorithmic Fairness Secure Multi-Party Computation Privacy Preservation |
gptkbp:isSupportedBy |
Conferences
Online Courses Research Papers Workshops |
gptkbp:isUsedIn |
Finance
Healthcare Smart Cities Social_Networks |
gptkbp:isVisitedBy |
gptkb:Microsoft
gptkb:Apple gptkb:Google |