Machine Learning with Differential Privacy

GPTKB entity

Statements (44)
Predicate Object
gptkbp:instanceOf Machine Learning
Differential Privacy
gptkbp:hasCitations Computational Complexity
Balancing Privacy and Utility
Model_Interpretability
gptkbp:hasFunding Increased Adoption
Public Awareness
Improved Algorithms
Regulatory Developments
gptkbp:hasRelatedPatent Artificial Intelligence
Statistical Analysis
Data Protection
gptkbp:hasStaff Data Sharing
Regulatory Compliance
Robustness Against Attacks
Enhanced_User_Trust
https://www.w3.org/2000/01/rdf-schema#label Machine Learning with Differential Privacy
gptkbp:isEvaluatedBy Accuracy
Scalability
Privacy Loss
Utility Loss
gptkbp:isLocatedIn gptkb:PyTorch
TensorFlow
R
Scikit-learn
gptkbp:isPromotedBy Academia
Governments
Organizations
Industry Leaders
gptkbp:isRelatedTo Data Mining
Algorithmic Fairness
Secure Multi-Party Computation
Privacy Preservation
gptkbp:isSupportedBy Conferences
Online Courses
Research Papers
Workshops
gptkbp:isUsedIn Finance
Healthcare
Smart Cities
Social_Networks
gptkbp:isVisitedBy gptkb:Microsoft
gptkb:Apple
gptkb:Google