gptkbp:instanceOf
|
gptkb:algorithm
|
gptkbp:alsoKnownAs
|
k-means algorithm
|
gptkbp:application
|
speech recognition
pattern recognition
data mining
image segmentation
|
gptkbp:category
|
unsupervised learning
|
gptkbp:complexity
|
O(nkt)
|
gptkbp:convergesTo
|
local minimum
|
gptkbp:field
|
gptkb:machine_learning
gptkb:mathematics
computer science
|
gptkbp:generalizes
|
gptkb:Voronoi_diagram
|
https://www.w3.org/2000/01/rdf-schema#label
|
Lloyd's algorithm
|
gptkbp:input
|
set of data points
|
gptkbp:limitation
|
assumes spherical clusters
may converge to local optimum
sensitive to initialization
|
gptkbp:measures
|
Euclidean distance
|
gptkbp:output
|
set of centroids
partition of data
|
gptkbp:proposedBy
|
1957
Stuart P. Lloyd
|
gptkbp:publishedIn
|
gptkb:IEEE_Transactions_on_Information_Theory
|
gptkbp:relatedTo
|
k-means clustering
expectation-maximization algorithm
|
gptkbp:requires
|
number of clusters (k)
|
gptkbp:step
|
assignment step
update step
|
gptkbp:usedFor
|
data compression
clustering
vector quantization
|
gptkbp:bfsParent
|
gptkb:k-means
gptkb:Lloyd_algorithm
gptkb:Voronoi_tessellation
gptkb:K-means++
|
gptkbp:bfsLayer
|
8
|