gptkbp:instanceOf
|
gptkb:model
|
gptkbp:basedOn
|
gradient boosting
|
gptkbp:competitor
|
gptkb:CatBoost
gptkb:XGBoost
|
gptkbp:developedBy
|
gptkb:Microsoft
|
gptkbp:documentation
|
https://lightgbm.readthedocs.io/
|
gptkbp:feature
|
high accuracy
GPU acceleration
fast training speed
parallel learning
support for large datasets
efficient memory usage
distributed learning
feature importance analysis
support for sparse data
histogram-based learning
leaf-wise tree growth
model export to text and binary formats
support for categorical features
support for missing values
|
gptkbp:firstReleased
|
2016
|
https://www.w3.org/2000/01/rdf-schema#label
|
LightGBM library
|
gptkbp:license
|
gptkb:MIT_License
|
gptkbp:memiliki_tugas
|
gptkb:dictionary
gptkb:list
regression
feature selection
|
gptkbp:npmPackage
|
lightgbm
|
gptkbp:openSource
|
true
|
gptkbp:repository
|
https://github.com/microsoft/LightGBM
|
gptkbp:supportedBy
|
true
|
gptkbp:supports
|
gptkb:list
binary classification
regression
early stopping
multi-class classification
custom loss functions
|
gptkbp:supportsAlgorithm
|
gptkb:tree
|
gptkbp:supportsDistributedLearning
|
true
|
gptkbp:supportsLanguage
|
gptkb:Java
gptkb:Python
gptkb:C++
R
|
gptkbp:supportsParallelLearning
|
true
|
gptkbp:usedIn
|
gptkb:Kaggle_competitions
|
gptkbp:writtenBy
|
gptkb:Python
gptkb:C++
R
|
gptkbp:bfsParent
|
gptkb:Gradient_Boosting
|
gptkbp:bfsLayer
|
7
|