Levenberg–Marquardt algorithm

GPTKB entity

Statements (30)
Predicate Object
gptkbp:instanceOf mathematical optimization
gptkbp:advantage fast convergence for small residual problems
may be slow for large-scale problems
requires computation of Jacobian matrix
gptkbp:alsoKnownAs damped least-squares method
gptkbp:category gptkb:logic
numerical analysis
mathematical optimization
gptkbp:combines gptkb:Gauss–Newton_algorithm
gradient descent
https://www.w3.org/2000/01/rdf-schema#label Levenberg–Marquardt algorithm
gptkbp:implementedIn gptkb:C++
gptkb:MATLAB
gptkb:Python_(SciPy)
R
gptkbp:improves gptkb:Donald_Marquardt
gptkbp:namedAfter gptkb:Donald_Marquardt
gptkb:Kenneth_Levenberg
gptkbp:proposedBy gptkb:Donald_Marquardt
gptkb:Kenneth_Levenberg
gptkbp:relatedTo least squares
nonlinear regression
trust region methods
gptkbp:usedFor nonlinear least squares problems
gptkbp:usedIn gptkb:machine_learning
curve fitting
parameter estimation
gptkbp:yearProposed 1944
gptkbp:bfsParent gptkb:Gauss–Newton_algorithm
gptkbp:bfsLayer 7