Levenberg–Marquardt algorithm
GPTKB entity
Statements (30)
Predicate | Object |
---|---|
gptkbp:instanceOf |
mathematical optimization
|
gptkbp:advantage |
fast convergence for small residual problems
may be slow for large-scale problems requires computation of Jacobian matrix |
gptkbp:alsoKnownAs |
damped least-squares method
|
gptkbp:category |
gptkb:logic
numerical analysis mathematical optimization |
gptkbp:combines |
gptkb:Gauss–Newton_algorithm
gradient descent |
https://www.w3.org/2000/01/rdf-schema#label |
Levenberg–Marquardt algorithm
|
gptkbp:implementedIn |
gptkb:C++
gptkb:MATLAB gptkb:Python_(SciPy) R |
gptkbp:improves |
gptkb:Donald_Marquardt
|
gptkbp:namedAfter |
gptkb:Donald_Marquardt
gptkb:Kenneth_Levenberg |
gptkbp:proposedBy |
gptkb:Donald_Marquardt
gptkb:Kenneth_Levenberg |
gptkbp:relatedTo |
least squares
nonlinear regression trust region methods |
gptkbp:usedFor |
nonlinear least squares problems
|
gptkbp:usedIn |
gptkb:machine_learning
curve fitting parameter estimation |
gptkbp:yearProposed |
1944
|
gptkbp:bfsParent |
gptkb:Gauss–Newton_algorithm
|
gptkbp:bfsLayer |
7
|