Leaky Re LU

GPTKB entity

Statements (35)
Predicate Object
gptkbp:instance_of gptkb:microprocessor
gptkbp:analyzes a line with a small slope for negative inputs
gptkbp:can_be different values for alpha
gptkbp:can_provide gradient flow
gptkbp:defines f(x) = x if x > 0 else alpha * x
gptkbp:enhances model performance
gptkbp:function allows a small, non-zero gradient when the unit is not active.
gptkbp:has_method alpha
https://www.w3.org/2000/01/rdf-schema#label Leaky Re LU
gptkbp:introduced gptkb:Kaiming_He
gptkbp:is_compared_to outliers than other functions
gptkbp:is_considered activation in residual networks
gptkbp:is_different_from everywhere
gptkbp:is_effective_against deep architectures
dying Re LU problem
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_often_compared_to saturate than sigmoid
gptkbp:is_often_used_in deep learning models
gptkbp:is_popular_in hidden layers
gptkbp:is_scalable gptkb:microprocessor
efficient
gptkbp:is_similar_to Parametric Re LU
gptkbp:is_used_in gptkb:microprocessor
gptkb:generative_adversarial_networks
reinforcement learning
transfer learning
convolutional neural networks
image classification tasks
autoencoders
natural language processing tasks
gptkbp:modifications linear activation function
gptkbp:suitable_for standard Re LU in some cases
gptkbp:type_of Re LU
gptkbp:variant Rectified Linear Unit