Leaky Re LU

GPTKB entity

Statements (37)
Predicate Object
gptkbp:instance_of gptkb:neural_networks
gptkbp:analyzes a line with a small slope for negative inputs
gptkbp:can different values for alpha
gptkbp:can_provide gradient flow
gptkbp:enhances model performance
gptkbp:function allows a small, non-zero gradient when the unit is not active.
gptkbp:has_a_parameter alpha
gptkbp:helps_to_prevent dying Re LU problem
https://www.w3.org/2000/01/rdf-schema#label Leaky Re LU
gptkbp:introduced_in gptkb:Kaiming_He
gptkbp:is_a_choice_for activation in residual networks
gptkbp:is_a_non-linear gptkb:neural_networks
gptkbp:is_computationally efficient
gptkbp:is_defined_by f(x) = x if x > 0 else alpha * x
gptkbp:is_differentiable everywhere
gptkbp:is_effective_against deep architectures
gptkbp:is_implemented_in gptkb:Tensor_Flow
gptkb:Py_Torch
gptkbp:is_less_likely_to saturate than sigmoid
gptkbp:is_less_sensitive_to outliers than other functions
gptkbp:is_often_used_in deep learning models
gptkbp:is_popular_for hidden layers
gptkbp:is_recommended_by standard Re LU in some cases
gptkbp:is_similar_to Parametric Re LU
gptkbp:is_used_in gptkb:neural_networks
gptkb:generative_adversarial_networks
reinforcement learning
transfer learning
convolutional neural networks
image classification tasks
autoencoders
natural language processing tasks
gptkbp:modifications linear activation function
gptkbp:type_of Re LU
gptkbp:variant Rectified Linear Unit
gptkbp:bfsParent gptkb:Tiny_YOLOv3
gptkbp:bfsLayer 7