LBFGS

GPTKB entity

Statements (34)
Predicate Object
gptkbp:instanceOf mathematical optimization
gptkbp:abbreviation Limited-memory Broyden–Fletcher–Goldfarb–Shanno
gptkbp:advantage low memory requirement
efficient for high-dimensional problems
less accurate Hessian approximation
gptkbp:category gptkb:logic
gradient-based optimization
gptkbp:compatibleWith full Hessian matrix
gptkbp:developedBy gptkb:Jorge_Nocedal
gptkb:Dong_C._Liu
gptkbp:estimatedCost inverse Hessian matrix
gptkbp:firstPublished 1989
gptkbp:fullName gptkb:Limited-memory_Broyden–Fletcher–Goldfarb–Shanno_algorithm
https://www.w3.org/2000/01/rdf-schema#label LBFGS
gptkbp:implementedIn gptkb:TensorFlow
gptkb:Julia
gptkb:MATLAB
gptkb:PyTorch
gptkb:SciPy
R
gptkbp:memoryUsage limited
gptkbp:publishedIn gptkb:Mathematical_Programming
gptkbp:referencePaper Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Mathematics of Computation.
Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming.
gptkbp:relatedTo gptkb:BFGS_algorithm
gptkbp:supportsAlgorithm gptkb:quasi-Newton_method
gptkbp:usedFor unconstrained optimization
large-scale optimization
numerical optimization
gptkbp:usedIn gptkb:machine_learning
data science
scientific computing
gptkbp:bfsParent gptkb:NLopt
gptkbp:bfsLayer 8