gptkbp:instanceOf
|
mathematical optimization
|
gptkbp:abbreviation
|
Limited-memory Broyden–Fletcher–Goldfarb–Shanno
|
gptkbp:advantage
|
low memory requirement
efficient for high-dimensional problems
less accurate Hessian approximation
|
gptkbp:category
|
gptkb:logic
gradient-based optimization
|
gptkbp:compatibleWith
|
full Hessian matrix
|
gptkbp:developedBy
|
gptkb:Jorge_Nocedal
gptkb:Dong_C._Liu
|
gptkbp:estimatedCost
|
inverse Hessian matrix
|
gptkbp:firstPublished
|
1989
|
gptkbp:fullName
|
gptkb:Limited-memory_Broyden–Fletcher–Goldfarb–Shanno_algorithm
|
https://www.w3.org/2000/01/rdf-schema#label
|
LBFGS
|
gptkbp:implementedIn
|
gptkb:TensorFlow
gptkb:Julia
gptkb:MATLAB
gptkb:PyTorch
gptkb:SciPy
R
|
gptkbp:memoryUsage
|
limited
|
gptkbp:publishedIn
|
gptkb:Mathematical_Programming
|
gptkbp:referencePaper
|
Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Mathematics of Computation.
Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming.
|
gptkbp:relatedTo
|
gptkb:BFGS_algorithm
|
gptkbp:supportsAlgorithm
|
gptkb:quasi-Newton_method
|
gptkbp:usedFor
|
unconstrained optimization
large-scale optimization
numerical optimization
|
gptkbp:usedIn
|
gptkb:machine_learning
data science
scientific computing
|
gptkbp:bfsParent
|
gptkb:NLopt
|
gptkbp:bfsLayer
|
8
|