gptkbp:instanceOf
|
mathematical optimization
|
gptkbp:abbreviation
|
gptkb:Limited-memory_Broyden–Fletcher–Goldfarb–Shanno_algorithm
|
gptkbp:advantage
|
low memory usage
|
gptkbp:appliesTo
|
gptkb:machine_learning
computational physics
data science
engineering
|
gptkbp:author
|
gptkb:Jorge_Nocedal
gptkb:Dong_C._Liu
|
gptkbp:basedOn
|
gptkb:BFGS_algorithm
|
gptkbp:category
|
gptkb:quasi-Newton_method
|
gptkbp:citation
|
Liu, D.C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1-3), 503-528.
|
gptkbp:fullName
|
gptkb:Limited-memory_Broyden–Fletcher–Goldfarb–Shanno_algorithm
|
https://www.w3.org/2000/01/rdf-schema#label
|
L-BFGS algorithm
|
gptkbp:implementedIn
|
gptkb:TensorFlow
gptkb:Julia
gptkb:MATLAB
gptkb:PyTorch
gptkb:SciPy
R
|
gptkbp:input
|
objective function
gradient
|
gptkbp:introducedIn
|
1980s
|
gptkbp:numberOfLocations
|
limited number of vectors
|
gptkbp:output
|
local minimum
|
gptkbp:relatedTo
|
gptkb:Newton's_method
gptkb:BFGS_algorithm
DFP algorithm
|
gptkbp:updateRule
|
approximates inverse Hessian matrix
|
gptkbp:usedFor
|
unconstrained optimization
large-scale optimization
numerical optimization
|
gptkbp:bfsParent
|
gptkb:BFGS_algorithm
gptkb:Ciyou_Zhu
gptkb:Jorge_Nocedal
|
gptkbp:bfsLayer
|
8
|