Keras Callbacks

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instance_of gptkb:API
gptkbp:analyzes training process
gptkbp:can training metrics
gptkbp:can_adjust_learning_rate during training
gptkbp:can_be_combined_with multiple callbacks
gptkbp:can_be_customized_with by user-defined functions
gptkbp:can_be_used_for early stopping
model checkpointing
dynamic learning rate adjustment
custom actions at the end of a batch
custom actions at the end of an epoch
custom actions at the end of training
custom actions at the start of training
logging training history
monitoring training progress
saving model architecture
saving model weights
saving training configuration
visualization with Tensor Board
gptkbp:can_save_best_model based on validation metrics
gptkbp:can_stop_training if a condition is met
gptkbp:captures model weights
https://www.w3.org/2000/01/rdf-schema#label Keras Callbacks
gptkbp:includes gptkb:Model
gptkb:Reduce_LROn_Plateau
gptkb:board_game
Early Stopping
CSVLogger
gptkbp:is_compatible_with gptkb:Tensor_Flow
gptkb:CNTK
gptkb:Theano
gptkbp:is_documented_in Keras documentation
gptkbp:is_implemented_in gptkb:Python
gptkbp:is_part_of gptkb:API
Keras library
gptkbp:is_supported_by Keras community
gptkbp:is_used_for hyperparameter tuning
performance monitoring
resource management
model evaluation
experiment tracking
training optimization
adjusting training parameters
controlling training flow
debugging training process
gptkbp:is_used_in model.fit() method
gptkbp:monitors validation loss
training accuracy
gptkbp:provides customization during training
gptkbp:used_in deep learning
gptkbp:bfsParent gptkb:tf.keras.callbacks._History
gptkbp:bfsLayer 5