KNN

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
gptkbp:advantage simple to implement
computationally expensive at prediction
no training phase
sensitive to irrelevant features
sensitive to the scale of data
gptkbp:alternativeTo gptkb:tree
gptkb:naive_Bayes
support vector machine
logistic regression
gptkbp:category instance-based learning
lazy learning
gptkbp:compatibleWith model training
gptkbp:dependsOn gptkb:Metric
feature scaling
choice of k
gptkbp:fullName K-Nearest Neighbors
https://www.w3.org/2000/01/rdf-schema#label KNN
gptkbp:implementedIn gptkb:MATLAB
gptkb:Weka
gptkb:scikit-learn
R
gptkbp:input feature vectors
gptkbp:introduced Fix and Hodges
gptkbp:introducedIn 1951
gptkbp:measures gptkb:Hamming_distance
gptkb:Manhattan_distance
gptkb:Minkowski_distance
Euclidean distance
gptkbp:output class label
regression value
gptkbp:parameter number of neighbors (k)
gptkbp:relatedTo gptkb:Metric
gptkb:curse_of_dimensionality
feature scaling
majority voting
weighted voting
gptkbp:requires labeled data
gptkbp:type supervised learning
gptkbp:usedFor gptkb:dictionary
regression
gptkbp:usedIn gptkb:machine_learning
image recognition
pattern recognition
recommendation systems
data mining
anomaly detection
gptkbp:bfsParent gptkb:KNN관객상
gptkb:Kings_Norton_railway_station
gptkb:Khanna_Railway_Station
gptkbp:bfsLayer 7