Statements (24)
Predicate | Object |
---|---|
gptkbp:instanceOf |
mathematical optimization
|
gptkbp:alsoKnownAs |
Polyak's heavy ball method
|
gptkbp:application |
gptkb:machine_learning
gptkb:signal_processing control theory |
gptkbp:category |
first-order optimization method
|
gptkbp:citation |
Polyak, B.T. (1964). Some methods of speeding up the convergence of iteration methods. USSR Computational Mathematics and Mathematical Physics, 4(5), 1-17.
|
gptkbp:convergesTo |
faster than gradient descent for some problems
|
gptkbp:features |
momentum term
|
https://www.w3.org/2000/01/rdf-schema#label |
Heavy ball method
|
gptkbp:inspiredBy |
physical analogy of a ball rolling on a surface
|
gptkbp:limitation |
may oscillate for large momentum
sensitive to parameter choice |
gptkbp:parameter |
learning rate (\\alpha)
momentum coefficient (\\beta) |
gptkbp:proposedBy |
gptkb:Boris_Polyak
|
gptkbp:relatedTo |
gptkb:Nesterov_accelerated_gradient
gradient descent |
gptkbp:updateRule |
x_{k+1} = x_k - \\alpha \\nabla f(x_k) + \\beta (x_k - x_{k-1})
|
gptkbp:usedFor |
convex optimization
non-convex optimization |
gptkbp:yearProposed |
1964
|
gptkbp:bfsParent |
gptkb:Boris_Polyak
|
gptkbp:bfsLayer |
6
|