Gaussian process regression

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf gptkb:model
statistical analysis
gptkbp:advantage flexible modeling
provides uncertainty estimates
gptkbp:application robotics
spatial statistics
time series analysis
Bayesian optimization
active learning
environmental modeling
geostatistics
surrogate modeling
gptkbp:basedOn gptkb:Gaussian_process
gptkbp:field gptkb:machine_learning
statistics
https://www.w3.org/2000/01/rdf-schema#label Gaussian process regression
gptkbp:implementedIn gptkb:GPflow
gptkb:GPy
gptkb:Julia
gptkb:MATLAB
gptkb:TensorFlow_Probability
gptkb:scikit-learn
R
gptkbp:input training data
gptkbp:introduced gptkb:Carl_Edward_Rasmussen
gptkb:Christopher_K._I._Williams
gptkbp:limitation computationally expensive for large datasets
scales cubically with number of data points
gptkbp:notablePublication gptkb:Gaussian_Processes_for_Machine_Learning_(2006)
gptkbp:output covariance function
mean function
predictive distribution
gptkbp:relatedConcept gptkb:Gaussian_process_classification
probabilistic modeling
hyperparameter optimization
kriging
covariance function
mean function
Bayesian linear regression
gptkbp:relatedTo gptkb:kernel_methods
Bayesian inference
support vector machines
gptkbp:requires hyperparameters
kernel function
gptkbp:usedFor statistical analysis
function approximation
uncertainty quantification
non-parametric regression
gptkbp:bfsParent gptkb:Gaussian_process
gptkbp:bfsLayer 6