Fused Multiply-Add (FMA) instructions

GPTKB entity

Statements (47)
Predicate Object
gptkbp:instance_of gptkb:architecture
gptkbp:benefits reduces rounding errors
gptkbp:enhances accuracy of calculations
gptkbp:feature high-performance computing
RISC architectures
gptkbp:function computes a * b + c
https://www.w3.org/2000/01/rdf-schema#label Fused Multiply-Add (FMA) instructions
gptkbp:improves performance of numerical algorithms
gptkbp:introduced_in IEEE 754-2008 standard
gptkbp:is_a_key_component_of high-precision arithmetic
gptkbp:is_a_key_operation_in convolutional neural networks
gptkbp:is_available_in gptkb:CUDA
gptkb:Open_CL
gptkbp:is_beneficial_for data analysis
machine learning applications
numerical stability
gptkbp:is_compared_to (a * b) + c
gptkbp:is_essential_for real-time systems
deep learning frameworks
gptkbp:is_implemented_in gptkb:computer
GPU architectures
FPGA (Field-Programmable Gate Array)
gptkbp:is_often_used_in digital signal processing
gptkbp:is_optimized_for matrix multiplication
parallel processing
gptkbp:is_part_of numerical libraries
vector processing
AI (Artificial Intelligence) computations
DSP (Digital Signal Processing) chips
SIMD (Single Instruction, Multiple Data) operations
gptkbp:is_relevant_to machine vision
cryptography algorithms
gptkbp:is_supported_by gptkb:x86_architecture
gptkb:ARM_architecture
modern CPUs
gptkbp:is_used_in image processing
financial calculations
graphics processing
3 D rendering
robotics calculations
statistical computations
gptkbp:is_utilized_in scientific computing
signal processing algorithms
gptkbp:reduces the number of operations required
gptkbp:used_in floating-point arithmetic
gptkbp:bfsParent gptkb:AVX2
gptkbp:bfsLayer 5