Find-S algorithm

GPTKB entity

Statements (20)
Predicate Object
gptkbp:instanceOf gptkb:model
gptkbp:assumes noise-free data
positive examples only
gptkbp:describedBy Machine Learning (book by Tom Mitchell)
gptkbp:field gptkb:machine_learning
concept learning
https://www.w3.org/2000/01/rdf-schema#label Find-S algorithm
gptkbp:input set of positive training examples
gptkbp:introduced gptkb:Tom_Mitchell
gptkbp:introducedIn 1982
gptkbp:limitation cannot handle negative examples
cannot handle noisy data
gptkbp:output most specific hypothesis
gptkbp:purpose find most specific hypothesis
gptkbp:relatedTo gptkb:Candidate_Elimination_algorithm
gptkbp:step for each positive example, generalize hypothesis minimally
initialize hypothesis to most specific
gptkbp:usedFor learning conjunctive concepts
gptkbp:bfsParent gptkb:Mitchell's_best_candidate_algorithm
gptkbp:bfsLayer 7