|
gptkbp:instanceOf
|
gptkb:data_mining_algorithm
gptkb:frequent_pattern_mining_algorithm
|
|
gptkbp:advantage
|
efficient for large datasets
does not require candidate generation
|
|
gptkbp:alternativeTo
|
gptkb:Eclat_algorithm
|
|
gptkbp:category
|
unsupervised learning
pattern mining
|
|
gptkbp:citation
|
over 10,000
|
|
gptkbp:complexity
|
linear with respect to number of transactions
|
|
gptkbp:developedBy
|
gptkb:Jiawei_Han
|
|
gptkbp:implementedIn
|
gptkb:Java
gptkb:Python
gptkb:C++
R
|
|
gptkbp:input
|
transaction database
|
|
gptkbp:introducedIn
|
2000
|
|
gptkbp:notablePublication
|
Mining Frequent Patterns without Candidate Generation (Han et al., 2000)
|
|
gptkbp:openSource
|
MLlib (Apache Spark)
Orange Data Mining
SPMF
|
|
gptkbp:output
|
frequent itemsets
|
|
gptkbp:publishedIn
|
gptkb:SIGMOD_2000
|
|
gptkbp:relatedTo
|
gptkb:Apriori_algorithm
|
|
gptkbp:requires
|
minimum support threshold
|
|
gptkbp:step
|
build FP-tree
mine FP-tree recursively
|
|
gptkbp:usedFor
|
association rule learning
frequent itemset mining
|
|
gptkbp:bfsParent
|
gptkb:Apriori_algorithm
|
|
gptkbp:bfsLayer
|
8
|
|
https://www.w3.org/2000/01/rdf-schema#label
|
FP-Growth algorithm
|