Explainable Artificial Intelligence

GPTKB entity

Statements (52)
Predicate Object
gptkbp:instanceOf gptkb:academic
gptkbp:abbreviation gptkb:XAI
gptkbp:application gptkb:military
autonomous vehicles
finance
healthcare
legal systems
gptkbp:challenge complexity of deep learning models
lack of standard evaluation metrics
trade-off between accuracy and interpretability
gptkbp:emergedIn 2010s
gptkbp:example decision trees
linear regression
attention mechanisms
prototype-based explanations
gptkbp:focusesOn making AI decisions understandable to humans
gptkbp:goal enable human oversight
facilitate debugging of AI models
increase trust in AI systems
https://www.w3.org/2000/01/rdf-schema#label Explainable Artificial Intelligence
gptkbp:importantFor gptkb:legislation
AI safety
fairness in AI
ethical AI
user trust
gptkbp:method gptkb:LIME
gptkb:SHAP
feature importance
counterfactual explanations
rule-based explanations
saliency maps
gptkbp:organization gptkb:DARPA_XAI_program
gptkb:European_Parliament
gptkb:NIST
gptkbp:publishedIn gptkb:Journal_of_Artificial_Intelligence_Research
gptkb:IEEE_Transactions_on_Neural_Networks_and_Learning_Systems
gptkb:Nature_Machine_Intelligence
gptkbp:regulates gptkb:GDPR_right_to_explanation
gptkbp:relatedConcept responsible AI
post-hoc explanation
causality in AI
inherently interpretable models
interpretable machine learning
model auditability
transparent AI
gptkbp:relatedTo gptkb:Machine_Learning
gptkb:artificial_intelligence
Accountability
Transparency
Interpretability
gptkbp:bfsParent gptkb:David_Gunning
gptkbp:bfsLayer 6