Expectation-Maximization Algorithm

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
statistical analysis
gptkbp:abbreviation gptkb:EM_algorithm
gptkbp:appliesTo Missing data problems
Mixture models
Probabilistic models
gptkbp:category Iterative method
Unsupervised learning
gptkbp:convergesTo Local maximum of likelihood
gptkbp:field Statistics
Data science
Machine learning
gptkbp:form gptkb:Jensen's_inequality
Likelihood maximization
https://www.w3.org/2000/01/rdf-schema#label Expectation-Maximization Algorithm
gptkbp:input Initial parameter estimates
Observed data
gptkbp:introduced gptkb:Donald_Rubin
gptkb:Nan_Laird
gptkb:Arthur_Dempster
gptkbp:introducedIn 1977
gptkbp:limitation Sensitive to initialization
May converge to local optima
Slow convergence near optimum
gptkbp:output Estimated parameters
gptkbp:publishedIn gptkb:Journal_of_the_Royal_Statistical_Society,_Series_B
gptkbp:relatedTo gptkb:Baum–Welch_algorithm
gptkb:Variational_inference
gptkb:K-means_algorithm
gptkbp:step gptkb:E-step
gptkb:M-step
Expectation step
Maximization step
gptkbp:usedFor gptkb:Hidden_Markov_Models
gptkb:Gaussian_Mixture_Models
Parameter estimation
Clustering
Maximum likelihood estimation
Latent variable models
Incomplete data
gptkbp:usedIn gptkb:signal_processing
gptkb:Bioinformatics
Natural language processing
Computer vision
Speech recognition
Genetics
Econometrics
Image segmentation
gptkbp:bfsParent gptkb:Finite_Mixture_Models
gptkbp:bfsLayer 8