Eliciting Latent Knowledge paper

GPTKB entity

Statements (24)
Predicate Object
gptkbp:instanceOf gptkb:academic_journal
gptkbp:allows The paper discusses methods for eliciting knowledge that is latent in AI systems, with a focus on alignment and interpretability.
gptkbp:arXivID 2206.01753
gptkbp:author gptkb:Paul_Christiano
gptkb:Jan_Leike
gptkb:John_Schulman
gptkb:Mark_Xu
gptkb:Dario_Amodei
gptkb:Sam_Bowman
gptkb:Tom_Henighan
gptkb:Jeff_Wu
gptkb:Owain_Evans
gptkb:Beth_Barnes
gptkb:Evan_Hubinger
Jacob Hilton
gptkbp:citation 100+
gptkbp:field gptkb:machine_learning
AI alignment
https://www.w3.org/2000/01/rdf-schema#label Eliciting Latent Knowledge paper
gptkbp:publicationYear 2022
gptkbp:title Eliciting Latent Knowledge
gptkbp:url https://arxiv.org/abs/2206.01753
gptkbp:bfsParent gptkb:ELK_(Eliciting_Latent_Knowledge)
gptkbp:bfsLayer 7