Divide & Conquer

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:Artificial_Intelligence
gptkbp:applies_to problem solving
gptkbp:benefits modularity
scalability
improves efficiency
ease of implementation
reduces complexity
not suitable for all problems
overhead of recursion
requires additional memory
gptkbp:characteristic recursive algorithms
gptkbp:example merge sort
binary search
quick sort
gptkbp:historical_significance developed in the 1960s
https://www.w3.org/2000/01/rdf-schema#label Divide & Conquer
gptkbp:influenced_by gptkb:Robert_Sedgewick
gptkb:John_von_Neumann
gptkb:Donald_Knuth
gptkbp:related_to dynamic programming
greedy algorithms
divide-and-conquer algorithms
divide-and-conquer analysis
divide-and-conquer applications
divide-and-conquer approach
divide-and-conquer frameworks
divide-and-conquer methods
divide-and-conquer paradigm
divide-and-conquer performance
divide-and-conquer principles
divide-and-conquer problems
divide-and-conquer recurrence relations
divide-and-conquer solutions
divide-and-conquer strategies
divide-and-conquer strategy
divide-and-conquer techniques
divide-and-conquer theorem
gptkbp:used_in gptkb:computer_science
gptkb:search_algorithms
gptkb:machine_learning
image processing
algorithm design
data processing
database management
parallel computing
optimization problems
network routing
graphics rendering
sorting algorithms
computational geometry
numerical algorithms
gptkbp:bfsParent gptkb:What_So_Not
gptkbp:bfsLayer 5