GPTKB
Browse
Query
Compare
Download
Publications
Contributors
Search
Densely Connected Convolutional Networks
URI:
https://gptkb.org/entity/Densely_Connected_Convolutional_Networks
GPTKB entity
Statements (42)
Predicate
Object
gptkbp:instanceOf
deep learning architecture
gptkbp:abbreviation
gptkb:DenseNet
gptkbp:application
image classification
object detection
semantic segmentation
gptkbp:architecture
gptkb:feedforward_neural_network
gptkbp:arXivID
arXiv:1608.06993
gptkbp:bench
gptkb:SVHN
gptkb:CIFAR-10
gptkb:CIFAR-100
gptkb:ImageNet
gptkbp:citation
highly cited
gptkbp:contribution
reduces number of parameters
alleviates vanishing-gradient problem
improves information flow and gradient propagation
introduces dense connectivity between layers
gptkbp:features
feature reuse
improved parameter efficiency
compact model size
each layer receives input from all previous layers
https://www.w3.org/2000/01/rdf-schema#label
Densely Connected Convolutional Networks
gptkbp:improves
ResNet on several benchmarks
gptkbp:influenced
subsequent neural network architectures
gptkbp:notablePublication
gptkb:Densely_Connected_Convolutional_Networks
gptkbp:openSource
gptkb:TensorFlow
gptkb:Keras
gptkb:PyTorch
gptkbp:proposedBy
gptkb:Laurens_van_der_Maaten
gptkb:Gao_Huang
gptkb:Kilian_Q._Weinberger
gptkb:Zhuang_Liu
gptkbp:publicationYear
2017
gptkbp:publishedIn
gptkb:CVPR_2017
gptkbp:relatedTo
gptkb:ResNet
Convolutional Neural Networks
gptkbp:uses
batch normalization
convolutional layers
bottleneck layers
ReLU activation
transition layers
gptkbp:bfsParent
gptkb:DenseNet
gptkbp:bfsLayer
6