Deep Labv1

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:cosmic_ray_detector
gptkbp:application gptkb:medical_imaging
gptkb:robotics
augmented reality
autonomous driving
image editing
gptkbp:applies_to computer vision tasks
gptkbp:architecture encoder-decoder
gptkbp:based_on Fully Convolutional Networks
gptkbp:developed_by gptkb:Google_Research
gptkbp:evaluates mean Intersection over Union (m Io U)
gptkbp:feature_extraction gptkb:Res_Net
gptkb:Xception
gptkbp:field_of_study gptkb:Artificial_Intelligence
computer vision
deep learning
gptkbp:has_achieved state-of-the-art performance
https://www.w3.org/2000/01/rdf-schema#label Deep Labv1
gptkbp:improves semantic segmentation
gptkbp:input_output RGB images
segmentation maps
gptkbp:key_feature gptkb:Performance_Monitoring
community support
high accuracy
industrial applications
real-time processing
modular architecture
contextual information
research impact
flexibility in design
open-source availability
support for various backbones
dense prediction
multi-scale context
robustness to occlusion
academic usage
adaptability to different domains
extensibility for future models
transfer learning capability
gptkbp:losses cross-entropy loss
gptkbp:performance gptkb:ADE20_K
gptkb:COCO_dataset
gptkbp:provides_information_on gptkb:PASCAL_VOC
Cityscapes
gptkbp:release_year gptkb:2016
gptkbp:successor gptkb:Deep_Labv2
gptkb:Deep_Labv3
gptkb:Deep_Labv3+
gptkbp:training supervised learning
gptkbp:uses convolutional neural networks
gptkbp:utilizes atrous convolution
gptkbp:bfsParent gptkb:Deep_Lab
gptkbp:bfsLayer 5