Decision tree

GPTKB entity

Statements (54)
Predicate Object
gptkbp:instanceOf Machine learning model
Supervised learning algorithm
gptkbp:advantage Can create biased trees if some classes dominate
Easy to interpret
Handles both numerical and categorical data
No need for feature scaling
Overfitting without pruning
Sensitive to small data variations
gptkbp:canBe Binary tree
Multiway tree
gptkbp:canBePruned Yes
gptkbp:canBeVisualized Yes
gptkbp:ensembleMethod Gradient boosting
Random forest
gptkbp:featureSelection Implicit
gptkbp:hasComponent Branch
Internal node
Leaf node
Root node
https://www.w3.org/2000/01/rdf-schema#label Decision tree
gptkbp:interpretable Yes
gptkbp:introducedIn gptkb:Ross_Quinlan
gptkbp:output Class label
Continuous value
gptkbp:popularAlgorithm gptkb:CHAID
gptkb:C4.5
gptkb:CART
gptkb:ID3
gptkbp:relatedTo gptkb:Bagging
Entropy
Pruning
Boosting
Decision rules
Ensemble learning
Feature importance
Gini index
Random forest
Rule-based learning
gptkbp:splittingCriterion Gini impurity
Variance reduction
Gain ratio
Information gain
gptkbp:supportsAlgorithm Greedy algorithm
gptkbp:usedIn Credit scoring
Data mining
Regression
Predictive modeling
Fraud detection
Classification
Customer segmentation
Medical diagnosis
gptkbp:vulnerableTo Overfitting
gptkbp:bfsParent gptkb:Bagging
gptkbp:bfsLayer 7