Data-Intensive Applications

GPTKB entity

Statements (59)
Predicate Object
gptkbp:instanceOf Field of study
gptkbp:appliesTo Machine Learning
Business_Intelligence
gptkbp:challenges Data Privacy
Data Security
Data_Integration
Data_Quality
gptkbp:focusesOn Processing large volumes of data
https://www.w3.org/2000/01/rdf-schema#label Data-Intensive Applications
gptkbp:impact Economic Factors
Global Events
Competitive Landscape
Technological Trends
gptkbp:includes Distributed Systems
Data Engineering
Big_Data
gptkbp:influenced Regulatory Requirements
Technological Advancements
Consumer Behavior
Market Demand
gptkbp:inheritsFrom Artificial Intelligence
Real-time Processing
Edge Computing
gptkbp:involves Data Analysis
Data Collection
Data Processing
Data_Storage
gptkbp:is_characterized_by Low Latency
High Throughput
Heterogeneous Data Sources
Complex_Workflows
gptkbp:is_supported_by Distributed File Systems
NoSQL Databases
SQL Databases
Stream Processing Frameworks
Batch Processing Frameworks
Data_Visualization_Tools
Data_Integration_Tools
Data_Management_Tools
Data_Quality_Tools
gptkbp:is_used_in Finance
Healthcare
Retail
Telecommunications
Social_Media
gptkbp:related_to Data Visualization
Data Governance
Data_Analytics
Data_Science
gptkbp:requires High Availability
Scalability
Fault Tolerance
gptkbp:utilizes Cloud Computing
Data_Warehousing
Data_Lakes
gptkbp:visitedBy Performance Metrics
Data Accuracy
Cost Efficiency
User Satisfaction