Dask-Array

GPTKB entity

Statements (65)
Predicate Object
gptkbp:instanceOf gptkb:Company
gptkbp:can_be Pickle
lazy evaluation
gptkbp:compatibleWith gptkb:Dask_Bag
NumPy
gptkbp:createdBy 2015
gptkbp:deployedTo pip
https://www.w3.org/2000/01/rdf-schema#label Dask-Array
gptkbp:is_available_in gptkb:PyPI
Dask_dashboard
gptkbp:is_designed_to cloud computing environments
multi-core processors
high-dimensional data
out-of-core computation
gptkbp:is_integrated_with gptkb:Pandas
other data processing libraries.
gptkbp:is_known_for scalability
flexibility in data handling
gptkbp:is_part_of open-source software
data analysis workflows
data engineering pipelines
gptkbp:is_recognized_for Python
gptkbp:is_supported_by gptkb:Anaconda
gptkbp:is_used_in gptkb:Apache_Spark
large datasets
machine learning
data preprocessing
Jupyter notebooks
academic research
financial modeling
scientific computing
big data applications
streamline data workflows
matrix computations
optimize resource usage
data visualization projects
data transformation tasks
support data-driven decision making
analyze time series data
build machine learning models
create visualizations
enhance performance of data applications
facilitate collaboration in data science teams
implement algorithms
manage large datasets efficiently
perform exploratory data analysis
perform simulations
perform statistical analysis
process large images
reduce computation time
scale computations
GPU_acceleration
gptkbp:isFacilitatedBy multi-dimensional arrays
gptkbp:isPartOf Dask_ecosystem
gptkbp:isUsedFor Dask DataFrame
existing NumPy arrays
gptkbp:maintainedBy Dask_community
gptkbp:performance distributed computing
gptkbp:provides parallel computing capabilities
gptkbp:suitableFor real-time data processing
data science applications
image processing tasks
gptkbp:supports Numpy-like operations
block-wise operations
gptkbp:transferFee NumPy arrays