DASK

GPTKB entity

Statements (69)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 5
gptkbp:bfsParent gptkb:Skikda_Airport
gptkbp:can_be_used_with gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
XG Boost
gptkbp:developed_by Coiled
gptkbp:first_released gptkb:2016
gptkbp:has_community active community
gptkbp:has_documentation https://docs.dask.org
gptkbp:has_feature gptkb:software_framework
arrays
fault tolerance
data locality
dataframes
task graphs
delayed execution
adaptive scaling
https://www.w3.org/2000/01/rdf-schema#label DASK
gptkbp:integrates_with gptkb:park
Dask Distributed
gptkbp:is_a_hub_for https://github.com/dask/dask
gptkbp:is_compatible_with gptkb:computer
SQL databases
No SQL databases
gptkbp:is_designed_for big data processing
real-time data processing
scalable analytics
gptkbp:is_open_source gptkb:theorem
gptkbp:is_optimized_for distributed systems
multi-core processors
gptkbp:is_part_of Python ecosystem
gptkbp:is_popular_in gptkb:academic_research
industry applications
data science community
gptkbp:is_scalable thousands of cores
petabytes of data
gptkbp:is_supported_by gptkb:Microsoft_Azure
gptkb:Google_Cloud
gptkb:AWS
gptkb:Anaconda
gptkbp:is_used_by gptkb:physicist
data scientists
data engineers
gptkbp:is_used_for ETL processes
parallel computing
stream processing
batch processing
data science workflows
data engineering tasks
gptkbp:language gptkb:Library
gptkbp:latest_version 2023.10.0
gptkbp:license gptkb:BSD_License
gptkbp:passes_through cloud environments
clusters
local machines
gptkbp:performance high performance
gptkbp:provides dynamic task scheduling
gptkbp:scales large datasets
gptkbp:supports gptkb:scikit-learn
gptkb:numpy
pandas
gptkbp:tutorials available online
gptkbp:use_case data analysis
data preprocessing
data visualization
data cleaning
machine learning model training
gptkbp:written_in gptkb:Library