Conditional Variational Autoencoder

GPTKB entity

Statements (55)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkb:computer
gptkbp:bfsLayer 3
gptkbp:bfsParent gptkb:computer
gptkbp:allows Mode collapse
Training instability
gptkbp:applies_to Anomaly detection
Text generation
Image generation
gptkbp:architectural_style Encoder-Decoder
gptkbp:can_be_used_with Other generative models
Supervised learning techniques
gptkbp:can_create Additional information
New data samples
gptkbp:developed_by gptkb:D._P._Kingma
gptkb:M._Welling
gptkbp:has_method Generated samples
https://www.w3.org/2000/01/rdf-schema#label Conditional Variational Autoencoder
gptkbp:input_output Conditional variables
gptkbp:is_different_from Standard Autoencoder
gptkbp:is_evaluated_by Quantitative metrics
KL divergence
Qualitative metrics
Reconstruction loss
gptkbp:is_explored_in gptkb:Workshops
Conferences
Research papers
Image editing
Data augmentation
Transfer learning
Style transfer
Domain adaptation
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkb:Py_Torch
gptkbp:is_influenced_by Bayesian inference
Neural networks
gptkbp:is_part_of gptkb:Artificial_Intelligence
Machine learning
gptkbp:is_related_to gptkb:Generative_Adversarial_Networks
gptkb:computer
gptkb:Deep_Learning
Latent variable models
gptkbp:is_similar_to gptkb:computer
gptkbp:is_used_for Feature extraction
Semi-supervised learning
Data imputation
gptkbp:is_used_in Natural language processing
Computer vision
Recommender systems
gptkbp:purpose Data generation
Representation learning
gptkbp:requires Training data
Latent space representation
gptkbp:training Backpropagation
gptkbp:uses Latent variables