Conditional Random Field

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instanceOf statistical analysis
probabilistic graphical model
gptkbp:advantage relaxes independence assumptions
supports arbitrary, non-independent features
gptkbp:application speech recognition
bioinformatics
optical character recognition
information extraction
gptkbp:featureFunction potential function
gptkbp:field gptkb:machine_learning
computer vision
natural language processing
gptkbp:form undirected graphical model
gptkbp:generalizes gptkb:Hidden_Markov_Model
gptkb:Maximum_Entropy_Markov_Model
gptkbp:hasModel conditional probability distribution
gptkbp:hasVariant gptkb:higher-order_CRF
gptkb:linear-chain_CRF
gptkb:semi-Markov_CRF
gptkb:skip-chain_CRF
https://www.w3.org/2000/01/rdf-schema#label Conditional Random Field
gptkbp:inferenceMethod gptkb:Viterbi_algorithm
belief propagation
gptkbp:input observation sequence
gptkbp:introduced gptkb:Andrew_McCallum
gptkb:Fernando_Pereira
gptkb:John_Lafferty
gptkbp:introducedIn 2001
gptkbp:limitation computationally expensive inference
parameter estimation complexity
gptkbp:objective log-likelihood
gptkbp:openSource gptkb:MALLET
gptkb:CRF++
gptkb:CRFsuite
gptkb:sklearn-crfsuite
gptkbp:optimizedFor gptkb:L-BFGS
gradient descent
stochastic gradient descent
gptkbp:output label sequence
gptkbp:parameter maximum likelihood estimation
gptkbp:publishedIn gptkb:Proceedings_of_the_Eighteenth_International_Conference_on_Machine_Learning_(ICML_2001)
gptkbp:relatedTo gptkb:Hidden_Markov_Model
gptkb:Markov_Random_Field
gptkb:Maximum_Entropy_Markov_Model
gptkbp:type discriminative model
gptkbp:usedFor image segmentation
part-of-speech tagging
named entity recognition
sequence labeling
gptkbp:bfsParent gptkb:Markov_Random_Field
gptkbp:bfsLayer 6