Computer-Aided Drug Design

GPTKB entity

Statements (55)
Predicate Object
gptkbp:instanceOf Drug discovery method
gptkbp:alsoKnownAs gptkb:CADD
gptkbp:application gptkb:biotechnology
Pharmaceutical industry
gptkbp:benefit Improves accuracy of drug candidate selection
Reduces cost of drug development
Reduces time for drug discovery
gptkbp:challenge Data quality
Prediction accuracy
Computational limitations
Protein flexibility
gptkbp:developedBy 1970s
gptkbp:enables Personalized medicine
Rational drug design
Target-based drug discovery
gptkbp:field Pharmaceutical sciences
Medicinal chemistry
gptkbp:goal Identify new drug candidates
Optimize lead compounds
https://www.w3.org/2000/01/rdf-schema#label Computer-Aided Drug Design
gptkbp:method Ligand-based drug design
Molecular docking
Pharmacophore modeling
Quantitative structure-activity relationship
Structure-based drug design
Virtual screening
gptkbp:relatedTo High-throughput screening
Artificial intelligence in drug discovery
Cheminformatics
In silico screening
gptkbp:requires Chemical compound libraries
Computational resources
Protein structure data
gptkbp:software gptkb:GOLD
gptkb:OpenEye
gptkb:Chimera
gptkb:ROCS
gptkb:Discovery_Studio
gptkb:AutoDock
PyMOL
Schrödinger Suite
MOE (Molecular Operating Environment)
gptkbp:uses gptkb:Bioinformatics
Machine learning
Computational chemistry
Deep learning
Molecular modeling
ADMET prediction
De novo drug design
Fragment-based drug design
Homology modeling
Molecular dynamics simulation
QSAR modeling
gptkbp:bfsParent gptkb:CADD
gptkbp:bfsLayer 7