Classification and Regression Trees

GPTKB entity

Statements (50)
Predicate Object
gptkbp:instanceOf gptkb:algorithm
gptkbp:abbreviation gptkb:CART
gptkbp:application finance
marketing
bioinformatics
diagnosis
fraud detection
credit scoring
customer segmentation
gptkbp:describedBy gptkb:Classification_and_Regression_Trees_(book)
gptkbp:feature pruning
non-parametric
handles missing values
binary splits
interpretable
recursive partitioning
gptkbp:field gptkb:machine_learning
statistics
data mining
https://www.w3.org/2000/01/rdf-schema#label Classification and Regression Trees
gptkbp:influenced ensemble methods
bagging
boosting
gptkbp:introduced gptkb:Charles_Stone
gptkb:Leo_Breiman
gptkb:Jerome_Friedman
gptkb:Richard_Olshen
gptkbp:introducedIn 1986
gptkbp:license public domain
gptkbp:limitation overfitting
biased towards features with more levels
instability to small data changes
gptkbp:output tree structure
gptkbp:relatedTo gptkb:CHAID
gptkb:C4.5_algorithm
gptkb:ID3_algorithm
random forest
boosted trees
gptkbp:software gptkb:SAS
gptkb:SPSS
R
Python scikit-learn
gptkbp:splittingCriterion information gain
variance reduction
Gini impurity
gptkbp:type gptkb:tree
gptkbp:usedFor gptkb:dictionary
regression
gptkbp:bfsParent gptkb:C&RT
gptkbp:bfsLayer 7