Classical Support Vector Machines

GPTKB entity

Statements (51)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:analyzes Decision Boundary
Support Vectors
Geometric Margin
gptkbp:applies_to Binary Classification
Multi-class Classification
gptkbp:based_on Statistical Learning Theory
gptkbp:benefits Computationally Intensive
Effective in High Dimensional Spaces
Requires Careful Parameter Tuning
gptkbp:can_be_extended_by Support Vector Regression
One-class SVM
gptkbp:developed_by gptkb:Alexey_Chervonenkis
gptkb:Vladimir_Vapnik
https://www.w3.org/2000/01/rdf-schema#label Classical Support Vector Machines
gptkbp:is_evaluated_by F1 Score
Cross-validation
Precision and Recall
Accuracy Metrics
gptkbp:is_implemented_in Various Software Libraries
gptkbp:is_optimized_for Structural Risk
gptkbp:is_popular_in gptkb:Pattern_Recognition
gptkb:computer
Bioinformatics
Data Mining
Image Classification
gptkbp:is_related_to gptkb:Artificial_Intelligence
gptkb:software_framework
Optimization
Statistical Learning
gptkbp:is_used_for gptkb:Regression
Classification
gptkbp:is_used_in gptkb:film_production_company
gptkb:Telecommunications_company
Finance
Healthcare
Manufacturing
gptkbp:max_speed Margin
gptkbp:requires Training Data
Feature Scaling
gptkbp:sensor gptkb:Outliers
gptkbp:training Computer Science Programs
Data Science Programs
Statistics Courses
Machine Learning Courses
Artificial Intelligence Courses
gptkbp:type gptkb:software_framework
gptkbp:uses Kernel Trick
Hyperplanes
gptkbp:bfsParent gptkb:Quantum_Support_Vector_Machines
gptkbp:bfsLayer 3