Central Limit Theorem (modern form)

GPTKB entity

Statements (28)
Predicate Object
gptkbp:instanceOf statistical theorem
gptkbp:appliesTo random variables with finite mean and variance
gptkbp:category statistical analysis
probability theorems
gptkbp:describes distribution of sum of independent random variables
gptkbp:form (X₁ + X₂ + ... + Xₙ - nμ)/(σ√n) → N(0,1) as n → ∞
gptkbp:formedBy early 20th century
gptkbp:generalizes gptkb:Berry–Esseen_theorem
gptkb:Lindeberg–Feller_theorem
Lyapunov central limit theorem
https://www.w3.org/2000/01/rdf-schema#label Central Limit Theorem (modern form)
gptkbp:implies sample mean approximates normal distribution as sample size increases
gptkbp:provenBy gptkb:Pierre-Simon_Laplace
gptkb:Jarl_Waldemar_Lindeberg
gptkb:Aleksandr_Lyapunov
gptkb:Andrey_Kolmogorov
gptkbp:relatedTo gptkb:normal_distribution
gptkb:law_of_large_numbers
gptkbp:requires finite variance
identical distribution (in classical form)
independence of random variables
gptkbp:state sum of large number of independent, identically distributed random variables tends toward normal distribution
gptkbp:usedIn gptkb:machine_learning
gptkb:probability_theory
data science
statistics
gptkbp:bfsParent gptkb:Central_Limit_Theorem_(early_form)
gptkbp:bfsLayer 7