Cart Pole-v0

GPTKB entity

Statements (95)
Predicate Object
gptkbp:instance_of gptkb:gymnasium
gptkbp:accessibility Open-source.
gptkbp:action Discrete
Based on policy.
Discrete actions.
gptkbp:action_space_size 2.
gptkbp:agent Varies.
Periodic.
Iterative.
Policy Gradient.
gptkbp:agent_adaptability High.
gptkbp:agent_deployment Easy.
gptkbp:agent_exploration Critical.
gptkbp:agent_learning_curve Steep.
gptkbp:agent_optimization Necessary.
gptkbp:agent_performance_metrics Reward.
gptkbp:agent_testing Essential.
gptkbp:agent_training_duration Varies.
gptkbp:agent_types_used Various.
gptkbp:analyzes Available.
gptkbp:application Yes.
gptkbp:available_in gptkb:gymnasium
gptkbp:can Available.
gptkbp:cart_position Continuous.
gptkbp:cart_velocity Continuous.
gptkbp:code Available on Git Hub.
gptkbp:community_support Strong.
gptkbp:contribution Active.
gptkbp:created_by gptkb:Open_AI
gptkbp:dependency Num Py.
gptkbp:description A classic control problem where a pole is balanced on a cart.
gptkbp:difficulty Easy
gptkbp:difficulty_levels Beginner.
gptkbp:discount_factor Varies.
gptkbp:educational_use Yes.
gptkbp:environment Simple.
gptkbp:environment_challenges Balancing.
gptkbp:environment_complexity Low.
gptkbp:environment_documentation Comprehensive.
gptkbp:environment_features Simple dynamics.
gptkbp:environment_feedback_loop Present.
gptkbp:environment_id Cart Pole-v0.
gptkbp:environment_limitations Simple dynamics.
gptkbp:environment_maintenance Active.
gptkbp:environment_popularity High.
gptkbp:environment_reset Random.
gptkbp:environment_scalability Limited.
gptkbp:environment_simplicity High.
gptkbp:environment_type gptkb:Control
gptkbp:environment_updates Regular.
gptkbp:environment_updates_frequency Regular.
gptkbp:environment_use_cases Reinforcement Learning experiments.
gptkbp:environment_variability Low.
gptkbp:evaluates Average reward.
gptkbp:feedback_mechanism Reward system.
gptkbp:goal Keep the pole balanced for as long as possible.
gptkbp:has_function Reset to a random state.
https://www.w3.org/2000/01/rdf-schema#label Cart Pole-v0
gptkbp:initial_state Randomly generated.
gptkbp:is_analyzed_in gptkb:machine_learning
gptkbp:is_explored_in Epsilon-greedy.
gptkbp:is_implemented_in Python.
Numerous.
gptkbp:is_recommended_for Newcomers to RL.
gptkbp:is_taught_in Varies.
gptkbp:latest_version 0.1.0
gptkbp:learning_algorithms Q-learning.
gptkbp:library Gym.
gptkbp:max_episode_steps gptkb:200
gptkbp:observation_space Continuous
gptkbp:observation_space_size 4.
gptkbp:performance Varies by agent.
gptkbp:pole_angular_velocity Continuous.
gptkbp:pole_length 0.5 meters.
gptkbp:pole_position Continuous.
gptkbp:policy_type Stochastic.
gptkbp:prize_pool 1 for every timestep the pole remains upright.
gptkbp:release_date gptkb:2016
gptkbp:reward_function Simple.
gptkbp:reward_shaping Not used.
gptkbp:similar_environments Mountain Car-v0.
gptkbp:simulation_speed Real-time.
gptkbp:state Vector.
gptkbp:state_normalization Yes.
gptkbp:state_space 4-dimensional vector.
gptkbp:state_transition Deterministic.
gptkbp:termination_condition Pole angle exceeds 15 degrees.
gptkbp:training Varies by algorithm.
gptkbp:tutorials Yes.
gptkbp:user_base Large.
gptkbp:user_feedback Positive.
gptkbp:user_interface Command line.
gptkbp:bfsParent gptkb:Cart_Pole-v1
gptkb:Mountain_Car-v0
gptkbp:bfsLayer 5