Big GAN

GPTKB entity

Statements (53)
Predicate Object
gptkbp:instance_of gptkb:television_channel
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Google_Brain_team
gptkbp:applies_to video game design
progressive growing
gptkbp:based_on GAN architecture
gptkbp:can_create high-resolution images
realistic textures
diverse categories of images
gptkbp:developed_by gptkb:philosopher
gptkbp:enhances diversity of generated images
gptkbp:has multiple variants
a large number of parameters
gptkbp:has_achievements state-of-the-art results
https://www.w3.org/2000/01/rdf-schema#label Big GAN
gptkbp:improves subsequent models
image generation quality
gptkbp:innovation generative models
gptkbp:introduced gptkb:2018
gptkbp:is scalable
gptkbp:is_a_framework_for unsupervised learning
gptkbp:is_a_tool_for creative applications
gptkbp:is_associated_with gptkb:Artificial_Intelligence
gptkbp:is_cited_in academic papers
gptkbp:is_compared_to other GA Ns
gptkbp:is_evaluated_by gptkb:Image_Net_dataset
gptkbp:is_featured_in AI conferences
gptkbp:is_implemented_in gptkb:Graphics_Processing_Unit
gptkbp:is_influenced_by gptkb:DCGAN
gptkbp:is_known_for high fidelity images
high-resolution outputs
gptkbp:is_part_of gptkb:Research_Institute
Deep Mind's research portfolio
the evolution of GA Ns
gptkbp:is_recognized_for its scalability
gptkbp:is_related_to gptkb:Style_GAN
gptkbp:is_used_for data augmentation
gptkbp:is_used_in art generation
image editing tools
gptkbp:related_model can produce high-quality images
can be adapted for various tasks
can be fine-tuned
has a large training dataset
learns from data
uses adversarial training
gptkbp:requires high computational resources
gptkbp:research_interest computer vision
gptkbp:subject machine learning studies
gptkbp:technology image synthesis
gptkbp:training distributed systems
gptkbp:type_of gptkb:software_framework
gptkbp:uses class-conditional generation
gptkbp:utilizes large batch sizes