Azure ML Pipelines

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:organ
gptkbp:automated gptkb:Azure_Functions
gptkb:Azure_Logic_Apps
gptkb:Git_Hub_Actions
gptkbp:can_be_used_for gptkb:Hyperparameter_Tuning
Real-time Inference
Batch Inference
gptkbp:developed_by gptkb:Microsoft
gptkbp:enables gptkb:collaboration
Version Control
Reproducibility
https://www.w3.org/2000/01/rdf-schema#label Azure ML Pipelines
gptkbp:integrates_with gptkb:Azure_Data_Lake
gptkb:Azure_Blob_Storage
gptkb:Azure_Dev_Ops
gptkbp:is_accessible_by gptkb:Azure_Portal
gptkb:CLI
REST API
gptkbp:is_available_on gptkb:Azure_Marketplace
gptkbp:is_compatible_with gptkb:Jupyter_Notebooks
gptkb:Power_BI
gptkb:Visual_Studio_Code
gptkbp:is_part_of gptkb:Azure_Machine_Learning
gptkbp:is_scalable High Throughput
Large Datasets
Multiple Users
gptkbp:is_used_by Data Analysts
Data Scientists
Machine Learning Engineers
gptkbp:offers Model Management
Experiment Tracking
Pipeline Orchestration
gptkbp:provides gptkb:Data_Science_Workbench
gptkb:machine_learning
Monitoring Tools
Security Features
Visual Interface
gptkbp:supports gptkb:Kubernetes
gptkb:Tensor_Flow
gptkb:Identity_and_Access_Management
gptkb:Py_Torch
gptkb:MLflow
gptkb:Scikit-learn
Data Encryption
Experimentation
Data Validation
Model Training
Feature Engineering
Model Deployment
Audit Logs
Data Preparation
Custom Docker Containers
Data Drift Detection
Model Drift Detection
gptkbp:uses gptkb:R_SDK
Python SDK
gptkbp:bfsParent gptkb:Microsoft_cloud_services
gptkbp:bfsLayer 6