Azure ML Designer

GPTKB entity

Statements (66)
Predicate Object
gptkbp:instance_of gptkb:software_framework
gptkbp:bfsLayer 4
gptkbp:bfsParent gptkb:Microsoft_cloud_services
gptkbp:allows visualization of data
gptkbp:can_be_used_with gptkb:Azure_Databricks
gptkbp:developed_by gptkb:Microsoft
gptkbp:enables data exploration
model training
experiment tracking
gptkbp:exported_to trained models
gptkbp:facilitates collaboration among data scientists
https://www.w3.org/2000/01/rdf-schema#label Azure ML Designer
gptkbp:includes pre-built modules
gptkbp:integrates_with gptkb:Azure_Machine_Learning
gptkbp:is_accessible_by beginners
web interface
gptkbp:is_available_for gptkb:High_School
gptkbp:is_available_in multiple languages
gptkbp:is_available_on gptkb:Azure_cloud_platform
gptkbp:is_compatible_with gptkb:R_programming_language
gptkb:Jupyter_notebooks
gptkbp:is_designed_for enterprise users
gptkbp:is_integrated_with gptkb:Power_BI
gptkb:Azure_Dev_Ops
gptkbp:is_optimized_for scalability
gptkbp:is_part_of gptkb:Microsoft_Azure
Azure ecosystem
Azure AI services
AI development lifecycle
data science workflow
gptkbp:is_supported_by gptkb:document
gptkbp:is_used_by data analysts
machine learning engineers
gptkbp:is_used_for predictive analytics
customer segmentation
feature engineering
image classification
recommendation systems
time series forecasting
anomaly detection
text analytics
building machine learning models
gptkbp:is_used_in gptkb:academic_research
gptkbp:offers API access
model evaluation tools
automated machine learning capabilities
data visualization options
gptkbp:provides data transformation capabilities
data ingestion tools
drag-and-drop interface
collaborative workspaces
real-time scoring
model deployment options
model interpretability tools
data labeling features
gptkbp:supports data preprocessing
data governance
hyperparameter tuning
multiple data sources
real-time analytics
data privacy compliance
model versioning
ensemble learning
Python scripting
custom model deployment
cloud-based computing