Azure Batch

GPTKB entity

Statements (58)
Predicate Object
gptkbp:instance_of gptkb:cloud_services
gptkbp:allows custom VM images
gptkbp:can_be_configured_for high availability
gptkbp:can_be_used_for image processing
data processing
financial modeling
video processing
scientific simulations
large-scale parallel and high-performance computing
genomics processing
rendering 3 D graphics
gptkbp:can_be_used_with gptkb:Azure_Machine_Learning
gptkbp:can_handle thousands of compute nodes
gptkbp:enables containerized workloads
https://www.w3.org/2000/01/rdf-schema#label Azure Batch
gptkbp:integrates_with gptkb:Azure_Storage
gptkbp:is_accessible_by gptkb:Azure_Portal
REST API
gptkbp:is_available_in multiple Azure regions
gptkbp:is_compatible_with gptkb:Azure_Functions
gptkbp:is_integrated_with gptkb:Azure_Dev_Ops
gptkbp:is_managed_by gptkb:Microsoft
gptkbp:is_optimized_for compute-intensive tasks
gptkbp:is_part_of gptkb:Microsoft_Azure
Azure ecosystem
gptkbp:is_used_by developers and data scientists
gptkbp:offers monitoring and logging features
task dependencies
auto-scaling capabilities
pricing based on usage
gptkbp:provides job scheduling
resource allocation
resource management
job scheduling policies
task management
task retries
user-defined metadata
API for job and task management
job scheduling flexibility
gptkbp:suitable_for rendering and transcoding tasks
gptkbp:supports gptkb:Android
API management
Docker containers
data analytics
machine learning workloads
parallel processing
multi-tenant environments
virtual networks
Python SDK
data transformation tasks
high throughput computing
Azure Active Directory authentication
Windows and Linux environments
batch processing workloads
custom scheduling algorithms
gptkbp:bfsParent gptkb:Azure_Blockchain_Service
gptkb:Microsoft_Cloud
gptkbp:bfsLayer 5