Amazon SageMaker Pipelines

GPTKB entity

Statements (55)
Predicate Object
gptkbp:instanceOf Amazon SageMaker
gptkbp:allows custom pipeline steps
gptkbp:enables continuous delivery
continuous integration
model deployment
model retraining
gptkbp:facilitates collaboration among data scientists
https://www.w3.org/2000/01/rdf-schema#label Amazon SageMaker Pipelines
gptkbp:integratesWith AWS_services
gptkbp:isAccessibleBy gptkb:AWS_Management_Console
gptkb:AWS_CLI
AWS_SDKs
gptkbp:isAvailableIn multiple_AWS_regions
gptkbp:isCompatibleWith Docker containers
gptkbp:isDocumentedIn AWS documentation
gptkbp:isIntegratedWith gptkb:Amazon_CloudWatch
gptkb:Amazon_S3
gptkb:AWS_Lambda
gptkb:AWS_IAM
gptkb:Amazon_ECR
Git repositories
Jupyter notebooks
gptkbp:isOptimizedFor performance
scalability
gptkbp:isPartOf AWS_ecosystem
MLOps
gptkbp:isPromotedBy AWS_marketing
gptkbp:isSupportedBy AWS_support
gptkbp:isUsedBy business analysts
data scientists
machine learning engineers
gptkbp:isUsedFor A/B testing
feature engineering
real-time inference
batch transform jobs
gptkbp:offers model monitoring
gptkbp:provides API for automation
security features
visualization tools
logging capabilities
reproducibility of experiments
cost management features
automated machine learning workflows
gptkbp:supports data preprocessing
hyperparameter tuning
model evaluation
data augmentation
model versioning
model training
data versioning
multiple ML frameworks
multi-account setups
data drift detection
model explainability
gptkbp:uses step functions